
SMSQzine
Issue #4 March 2017

smsqzine

Published by:
Timothy Swenson
swenson_t@sbcglobal.net
swensont@lanset.com

SMSQzine is published as a
service to the Sinclair QL
community. Writers are invited
to submit articles for publication.
Readers are invited to submit
article ideas.

Created using Open
Source Tools:

­ OpenOffice
­ Scribus
­ Gimp
­ SMSQmulator

Copyright 2017
Timothy Swenson

Creative Commons License
­ Attribution
­ Non­Commercial
­ Share­Alike

You are free:

­ To copy, distribute,
display, and perform
the work.

­ To make derivitive
works.

­ To redistribute the
work.

table of contents

Editorial 1

Digital Precision C Front End 1

Orbit 2

Array Search 3

New Release of uQLx 3

Wander 4

Playing with Digital Precision C 6

Editorial

It's been a few months, but I have had enough
projects and ideas to write articles for another issue
of SMSQzine. The articles detail the different
projects that I have been working. Some programing
projects, some testing projects, some entertaining and
some that are hopefully interesting. Even if you don't
use any of the code mentioned in some of the articles,
I hope that it gives you an idea for a project or code
of your own.

Digital Precision C Front End

If I am writing a C program that uses QDOS calls, I
find that Digital Precision C is my compiler of
choice. I started years ago with the Small­C
compiler, which eventually became Digital Precision
C, so it is also the compiler that I am most familiar
with.

The one problem with the compiler is that it is not
able to handle directories. It expects all library and
other files to be on the same device, be it WIN1_,
FLP1_, or RAM1_. If given a path for source files,
the compiler will use it, but there are some files
where it just uses the default device.

In the old days of floppies, what I could normally do
is copy everything to RAM1_ and run all compilation
from there and then save to floppy when I was done.
Now I have the compiler on WIN1_ and the source
code on WIN2_. Since I have sub­directories on
WIN1_, I can't use WIN1_ as my default device, so
I've fallen back to using RAM1_ for storing the files
the compiler is expecting.

Since I don't use the compiler all that often, it can
take a few minutes to remember the syntax of the

compiler (cc) and the code generator (cg)
command lines. I thought it was about time to create
a front­end for the compiler that will make it much
easier to use.

The front end is just a short SuperBasic program that
I have compiled with Turbo. It first copies the
compiler necessary files to RAM1_. It gets from the
user the device / directory of the source files (like
WIN2_ or WIN2_src_). It then gets the name of the
program to compile (without the _c extension). It
constructs the proper command line for both the
compiler and code generator and displays that on the
screen.

The program then waits for input. If the 1 key is hit,
then the compiler will be executed. If the 2 key is hit,
then the code generator will be run. Hitting 3 exits
the front end. When either phase of the compiler is
run, it can execute and quit before there is time to it
to display on the screen. To confirm that a key has

been hit and
acted on, a beep
will sound.

With the front
end being
compiled, during

a compile session it need only be executed once.
Once editing of the source program is done and
saved, CTRL­C to the front end, hit the keys to start
the compiler and code generator. If there are errors,
CTRL­C back to the editor and continue working on
the source code. This is the way that front end is
designed. If executed each time the compiler is
needed to be run, it will query the user about copying
the files over the existing files in RAM1_.

The front end is designed for my environment, using
the directories that I use. It assumes that the library
files are in WIN1_DPC_ directory. It is fairly easy to
edit the code to adjust for a different environment and
then fairly easy to compile with Turbo. With Turbo, I
only changed the Task Name and the name of the
output file. The rest were all just the defaults.

Page 1

Orbit

A while back there was some discussion on the QL
Forums chat about playing
Kerbal Space Program, which
is a game that lets one built
rockets, launch them and orbit
around another planet. It
would be nice to try
something like this on the QL,
but Kerbal is way too
complicated.

I was able to dust off an old
program and try for
something similar, but much
easier to program. Back in
college I had "stolen" a
program from a friend. The program is a simulation
of an object orbiting around a planet. The program
allows input from the user to
add thrust to the object to
affect the orbit. If the object
is traveling to the left and
the user adds right thrust,
this will decelerate the
object and let to move closer
to the planet.

I changed the program to
have the starting point not be
a a stable orbit. The user
must add thrust to the object
to get the right velocity at a
certain location in space, to
be in a stable orbit. The
display shows the X and Y
velocity of the object and the
X and Y location. This helps
the user hit a certain point at a certain velocity.
Advanced players can tinker more with using thrust
and see about moving from a circular orbit to a more
elliptical orbit, or change the orbit to be close to the
planet at one point and far from the planet at another.

To make the game more interesting, I decided to use
some nice graphics and utilize the GD2 colors. I

wanted to create a nice image of a planet. At first I
tried just drawing a circle and then adding some
additional color to it. Then I wanted to see if I could

just copy a JPEG or PIC
image to the screen.

David Westbury wrote a
package called fun.zip and
one of the extensions in
that package is called
FPIC_LOAD. This will
take a _PIC file and load it
to a location on the screen.
My next step was to find
an image that I could use.
I found an image and tried
to convert it from BMP to
PIC and could not get that

to work. Bob Spelton stepped up to help me and was
able to send me the images in _PIC format.

As I was testing the program
in SMSQmulator, I found
that the images were only
displaying about every other
part of the image in stripes.
I sent a query off to
Wolfgang Lenerz and he sent
me a beta release of the next
version of SMSQmulator
and that fixed the problem.

The game is designed to be
run with a large screen, so
you will need either QPC2
or SMSQmulator with a
screen size of 1400 x 800.
Both emulators can handle
this resolution and they both
support GD2 colors.

The game comes the toolkit needed for the game, a
font, and a user guide in PDF. The game is written
in SuperBasic and is not compiled. With
SMSQmulator, I found that the game was fast enough
and did not need any compilation.

Page 2

Opening screen for the game

Satellite orbiting around Earth

Array Search

I am working on a project where I need to quickly
find a word in a large array of words. My concern
was how long it would take for each search and ways
to make the search quicker. The project is to take a
text file of a Structured SuperBasic program, find all
of the SuperBasic keywords and capitalize them.

Before the search of the array is possible, the array
has to be filled with a list of words. The word list is
generated and stored in a text file. When the program
is run, the text file is read into the array. The
keyword file was generated by sending the output of
the EXTRAS command to a file. Using
SMSQmulator and having a number of toolkits
loaded, the keyword list is 768 words long. The
keyword list was also sorted to make things easier
(more about this later). Since the sort needs to only
be done once, there is no processing penalty for
doing it.

The first method of searching is the brute force
method, where the search starts at the top of the array
and searches down through the array until the word is
found or not found. It is a very simple search, but not
very efficient. It has no requirements on how the
data is arranged in the array. If the array is sorted or
not, the search still works the same.

The second method is to handle the search a little
more intelligently. With the keywords pre­sorted
when they go into the array, all of the keywords that
start with the same letter are grouped together. If a
word that I am searching for starts with the letter D,
then I only need to start searching in the array where
the keywords that start with the letter D are located.
Instead of searching all 768 words, in the worse case,
the search only needs to search through the keywords
that start with D.

As the keywords are read into the array, the character
code of the first letter is tracked. If the character
code changes, then this is the start of a different
letter. Where in the array that character change takes

place is stored in another array (indexed by the
character code).

When given the search word, the first code of its first
character is determined and used to look in the index
of the first keyword in the array that begins with the
same character. The search will only need to search
the 10­30 or so words that begin with that character
instead of the full array.

The second search will be faster, but by how much
was unknown. To determine how much faster, I
captured the system time when the search started and
the system time when the search ended. QL DATE
function will only go down to the second, so I had to
run both searches 3,000 times to get any sort of
valuable timing numbers.

The brute force search took 35 seconds for 3,000
searches. The index search took just about 1 second
for 3,000 searches. The second search was not all
that difficult to code, but it sure made for a much
faster search.

The source code is included in the zip file for this
issue.

New Release of UQLX

Back in the late 1990's, Richard Zidlicky created
uQLx, the QL emulator for Unix. I ran it on a SGI
Indy workstation for a number of years, while I was
working at SGI. It was not much longer after 2001
that Richard stopped working on uQLx and the code
sat dormant.

At the "QL is 30" meeting, Graeme Gregory was
talking with someone about uQLx and they said
something about how it was impossible or real
difficult to convert uQLx to run on 64­bit systems.
Being a C coder by trade, Graeme thought this would
be a good challenge and got a hold of the uQLx
source to see what he could do.

Page 3

After some serious cropping of some of the uQLx
code, Graeme was able to get it to compile with 64­
bit. He did have to go through the code looking for
places that were set for 32­bit and fix a few other
issues. Eventually he had a working version of
uQLx.

UQLx has been tested with a number of QL
programs. A number worked, and some did not.
Since the main purpose of Graeme's work was to
make uQLx compilable on newer systems, there was
little effort put into fixing the main emulation core of
uQLx. There are some programs that have never run
on uQLx and probably will not run on the current
version.

The version
that Graeme
worked on is
available from
Github. You
just need to
install git on a
Linux system,
pull down the
source code
and compile it
with gcc. To
make it easier
for users, I
have put
together a binary distribution of uQLx. I compiled
the 32­bit version, Graeme compiled the 64­bit and
he also compiled versions for ARM. Rob Heaton did
the testing of the ARM versions.

I also put together a small QXL.win file to go with
uQLx that has a few programs including unzip so that
the user is able to use unzip to access a number of
programs available for download. I also created a
User Guide that walks the user through setting up the
binary distribution of uQLx and also how access the
source code on Gitbhub and compile it.

The binary release is now available on Dilwyn's web
site on the emulation page:

http://www.dilwyn.me.uk/emu/index.html

Wander

In 1973, Gegory Yob wrote the game "Hunt the
Wumpus", which was a simple game of going
through a number rooms in a cave looking to kill the
Wumpus before he kills you. The commands were
simple in that you had a selection of connecting
rooms to move into next. The rooms could have

hazards in
them that
could harm
you. If you
thought the
Wumpus was
in the next
cave room,
you could
shoot an arrow
in the room to
kill him. This
was the first
cave crawling
game.

In Wikipedia, the article on "Interactive Fiction", has
this statement:

"Around 1975, Will Crowther, a programmer and an
amateur caver, wrote the first text adventure game.
Adventure.."

This game later became known as Colossal Cave. It
was written in Fortran for the PDP­10. The original
game was based on actually crawling through a real
cave. Don Woods was the one that added the fantasy
elements to the game. In 1978, Scott Adams of
Adventure International, wrote "Adventureland"
based on Colossal Cave. first written for the TRS­80
Model 1.

Page 4

Boot screen for uQLx

For many years everyone through that Adventure by
Will Crowther was the first text adventure game, later
to be known as Interactive Fiction.

In 1973, Peter Langston wrote a program called
Wander in BASIC. It was the first text adventure

game, coming even before Colossal Cave. In 1974,
Peter ported the game to C and to a "mainframe"
environment. The game was mentioned in the Inform
Designer's Manual and in a number of other places,
but most thought the game was lost.

Recently, Peter dug through an old e­mail archive and
was able to retrieve a slightly later version of the
program, from about 1980.

Wander is not just a text adventure game, but a game
system. A single adventure is two files which
Wander, the game engine, processes to run the
adventure. Part of the distribution was the document
that has the instructions on how to write the
adventures and create the files that drive the game.

Wander comes with three adventures, the first starts
at the Aldebaran III Spaceport where you are a
diplomat trying to avert an uprising. In the second

one, "Castle", you are taken back in time to a castle.
The third one, is a tutorial to show how Wander
works by having an adventure with binary math.

Each adventure is composed of a .misc and a .wrld
file. The Misc (.misc) file contains the location

dependent information and the World (.wrld) file
contains location ­ state information. There are two
text files that describe the contents and format of
each of these files.

I downloaded the version that was made available
and compiled it under Linux. It compiled with no
changes and just ran. It tried to compile it on C68,
but there were a number of errors. Not being a C
expert, I passed Wander on to Graeme Gregory, our
resident C expert, and was he able to compile it under
QDOS­GCC compiler and get it working.

I'm not a fan of text adventure games, but given the
recent discussion on the "Sinclair QL Forum", when I
ran across the mention of Wander on the Slashdot
website, I had to see if it was possible to get it
running on the QL. Given that the QL is over 30
years old, I thought it would be interesting to run

Page 5

Opening screen for the default adventure for Wander

software on the QL that was written years before the
QL was even thought of.

There is an issue of Wander not working with the
Signal Extensions, so don't load the sigext30_rext file
before running Wander.

Wander is available on Dilwyn Jones website:

http://www.dilwyn.me.uk/games/adventures/wander.z
ip

Playing with Digital Precision C

Digital Precision C (DP C) is an older compiler that
has not been updated in a long time, where as
SMSQ/E has had a number of improvements over the
years. I was wondering lately if DP C would be able
to use any of the newer features of SMSQ/E.

Colors

With SMSQmulator, there are four color modes:

colour_QL ­ 8 primary colors (64 w/ stipple)
colour_PAL ­ 256 colors
colour_24 ­ 24­bit colors (16 million)

DP C was designed for the BBQL, which only had
mode 4 and mode 8. I wondered if it could access
more than the standard QL colors. The paper and ink
system calls use INT (8 bits), so I knew that 24­bit
color was not possible. So with 8­bits, it might be
possible to do colour_PAL. I wrote a short
SuperBasic program that set the paper to a color,
cleared the screen and did this 256 times. I set the
color mode and ran the program. This gave me my
baseline for colors.

I wrote a similar C program. I made sure not to set
the MODE in the program, hoping that the colors that
I set before running the C program would come into
play. I set the color to colour_QL and ran my C
program. It got the 8 primary colors. I then set the
color to colour_PAL, ran the program and still got the

8 primary colors. I also set the MODE in the C
program to 4 and to 8, and I still got the same 8
primary colors. No matter the mode or color setting,
DP C will only generate colour_QL colors.

Window Size

With larger window sizes, I wondered if DP C could
create a window larger than the standard 512x256. I
opened a large format window with SMSQmulator,
then changed the code in my color program to open a
window with dimensions of 1000x512. I ran the
program and it generated the right size window. It
looks like DP C can handle the larger window sizes.

Task Name

Both Turbo and C68 compilers let you set the name
of the executable (task name) when listed in the jobs
table. With DP C, all that is displayed in the jobs
table is "Digital C". When writing programs, one
might want the task name to be related to the program
versus some generic name for all DP C programs. I
checked the DP C manual and there is no way of
setting the task name. I used a file hex editor and
found where in the executable the task name is
stored. I knew that it might be bad to change the size
of the executable file, so if I was going to edit the file
and change the task name, I had to not change the
size of the name. With "Digital C", I had 9 characters
to utilize. If I had a short task name, I could set the
rest of the characters to the space character. The file
editor worked great in editing the executable. Granted
it is a little cumbersome to edit it by hand, but it only
needs to be edited once, when the program is
considered complete.

Console Window

With DP C, there is a default console window that is
created by the compiler runtime. It is possible to
override this default window by creating a function
called _console(), where a new window is defined. As
I was writing my test programs, I made a few coding
errors when creating _console() and had to refer back
to some older code about creating it.

Page 6

Part of the _console() function is to open a window
with a file pointer to hold the window pointer. In
SuperBasic this would be "open #3" where 3 is stored
in a variable. When the paper or ink is set on the
window, the function call is made with the variable
for the window like this:

ink(fd);
paper(fd);

The mistake I made was thinking that when I would
right text to the window, I would use fprintf() like
this:

fprintf(fd,"Hello world\n");

But that did not work. Just using regular printf() was
the answer. This was the way that I had written
programs for years, but thinking about it some more,
I realized that it was not the right way. I found an
other DP C (or Small C) program by a different
programmer and he had the right approach. I
confirmed it by re­reading the DP C manual. What I
find interesting is given how my code was wrong, it
still did the job of opening the console window,
setting the paper and ink colors. Since printf() is
designed for STDOUT, I think that the new window
sort of became the new STDOUT.

Below is my original code (window1_c) and the
proper code (window2_c). Both program do
basically the same thing, but each one takes a
different approach to it. From now on, I'm going to
use the second, more proper, way of writing the
_console() function.

/* window1_c */

#include <stdio_h>

char *fd;

_console() {
fopen(fd,"con","w");
window(fd,300,100,75,75);

paper(fd,0);
ink(fd,4);
border(fd,2,2);
cls(fd);

}

main()
{

printf("This is a test.\n");
pause(200);

}

/* window2_c */

#include <stdio_h>

_console() {
int fd;

fd =
fopen("con_300x100a75x75","w");

paper(fd,0);
ink(fd,4);
border(fd,2,2);
cls(fd);
return(fd);

}

main()
{

int fd;

fd = _console();

fprintf(fd,"This is a test.\n");
pause(200);

}

Page 7

